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Abstract. The leaf area index (LAI) is a crucial parameter for understanding the exchanges of momentum, 

carbon, energy, and water between terrestrial ecosystems and the atmosphere. To improve the ability to 

simulate land surface water and energy balances, the Data Assimilation Research Testbed (DART) has 

been successfully coupled to the Community Land Model (CLM) by assimilating global remotely sensed 15 
LAI data with explicit carbon and nitrogen components (CLM4CN). The purpose of this paper is to 

determine the best algorithm for LAI assimilation. Within this framework, four sequential assimilation 

algorithms, i.e., the Kalman Filter (KF), the Ensemble Kalman Filter (EnKF), the Ensemble Adjust 

Kalman Filter (EAKF), and the Particle Filter (PF), are applied, thoroughly analyzed and compared. The 

results show that assimilating remotely sensed LAI data into the CLM4CN is an effective method for 20 
improving model performance. In detail, the assimilation accuracies of the ensemble filter algorithms 

(EnKF and EAKF) are better than that of the KF algorithm because the KF is based on the linear model 

error assumption. The PF algorithm performs worse than the EAKF and EnKF algorithms because of the 

gradually reduced acceptance of observations with assimilation steps. In other words, the contribution of 

the observations to the posterior probability during the assimilation process is reduced. The EAKF 25 
algorithm is the best method because the matrix is adjusted at each time step during the assimilation 

procedure. 

1 Introduction 

Land surface processes play an important role in the earth system because all the physical, biochemical, 

and ecological processes occurring in the soil, vegetation, and hydrosphere influence the mass and energy 30 
exchanges during land-atmosphere interactions (Bonan, 1995; Pitman, 2003; Pitman et al., 2009, 2012). 

The leaf area index (LAI) is a key biophysical parameter of vegetation in land surface models (LSMs) 

and influences their simulation performance. Therefore, high-quality, spatially and temporally 

continuous LAI inputs are extremely important (Bonan et al., 1992; Li et al., 2015). 
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Real-time monitoring of LAI on a large scale is a worldwide problem. The lack of spatial 

representativeness caused by the sparse distribution of conventional observations makes it difficult to 

achieve a global observational LAI dataset. Remote sensing can provide global data with high spatial 

and temporal resolutions, but the inversion accuracy is associated with different plant functional types 

(PFTs) and vegetation fractions. Furthermore, although advanced LSMs (e.g., the Community Land 5 
Model version 4, CLM4) can predict LAI variation, the model performance is greatly affected by the 

model structure or the initial/forcing/boundary conditions of the input (Dai et al., 2003; Luo et al., 2003; 

Levis et al., 2004). The Land Data Assimilation System (LDAS), through optimally combining both 

dynamical and physical mechanisms with real-time observations, can effectively reduce the estimation 

uncertainties caused by spatially and temporally sparse observations and poor observed data accuracy 10 
(Kalnay, 2003). 

A complete LDAS is mainly composed of forcing, initial and boundary datasets, parameterization 

sets, dynamical models as physical constraints, assimilation algorithms, observational data and target 

output. The widely acknowledged LDASs include the North LDAS (NLDAS, Mitchell et al., 2004; 

NLDAS-2, Luo et al., 2003; Xia et al., 2012), Global LDAS (GLDAS, Rodell et al., 2004), European 15 
LDAS (ELDAS, Jacobs et al., 2008), West China LDAS (WCLDAS, Huang and Li, 2004), and Canadian 

LDAS (CaLDAS, Carrera et al., 2015). 

As a link between observations and dynamic model states, mathematical algorithms play an 

important role in calculating the increments and adjusting the state vector during assimilation (Kalnay et 

al., 2007). The two basic data assimilation algorithms are the variational method based on optimal control 20 
theory (Dimet and Talagrand, 1986) and sequential algorithms based on the Kalman Filter (KF). To date, 

the most popular variational algorithms widely utilized in LDAS (Evensen, 2003) are three-dimensional 

variation (3DVAR, Zhang et al., 2011) and four-dimensional variation (4DVAR) algorithms. For 

3DVAR algorithms, the observation operator can be nonlinear, but the background variance is isotropic 

and does not change with time. The 4DVAR algorithms can employ flow-dependent forecast error 25 
covariance but cost more to implement and maintain. The state quantity is estimated by using all possible 

observations and the statistical characteristics of dynamic model simulations and observations to 

minimize the estimated error. The KF is the theoretical basis of the sequential data assimilation algorithm. 

Because the KF algorithm is based on the linear model error assumption, many new sequential algorithms 

have been proposed. For example, the Extended Kalman Filter (EKF) was developed to meet the need 30 
for a nonlinear observation operator, but the tangent operator needs to be developed (Kalnay, 2003). 

Based on the Monte Carlo method and focused on the nonlinear operator, the Ensemble Kalman Filter 

(EnKF) was developed (Evensen, 1994) and was first used in the study of atmospheric science 

(Houtekamer and Mitchell, 1998). Since then, the EnKF has been widely applied for the assimilation of 

ocean, land surface and atmospheric data (Houtekamer et al., 2005; Evensen, 2007). 35 
Many previous studies focusing on the comparison of variational and sequential algorithms have 

been conducted to determine the optimal assimilation method (Han and Li, 2008). Wu et al. (2011) 

systematically compared EnKF and 3DVAR/4DVAR algorithms and found that the EnKF algorithm was 

better than the 3DVAR method and the same as the 4DVAR method. For this reason, the application of 

the EnKF algorithm has been expanded quickly, and many other forms of the EnKF method have been 40 
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developed, such as the Dual EnKF (Li et al., 2014), Ensemble Square Root Filter (EnSRF) (Whitaker 

and Hamill, 2002), and Ensemble Adjust Kalman Filter (EAKF, Anderson, 2001). At the same time, 

combinations of variational algorithms and sequential algorithms have also been developed. For example, 

the maximum likelihood ensemble filter (MLEF, Zupanski, 2005) was developed to find the optimal 

solution by minimizing the target function for the nonlinear observation operator. The combination of 5 
3DVAR and PF algorithms also showed better results than either single algorithm (Leng and Song, 2013). 

Furthermore, hybrid variational-ensemble data assimilation methods, i.e., the 4DEnKF (Hunt et al., 2004; 

Fertig et al., 2007; Zhang et al., 2009) and the DrEnKF (Wan et al., 2009), have been developed at NCEP 

and applied to improve model predictions (Whitaker et al., 2008). 

Recent studies focusing on assimilation in terrestrial systems have tended to add multiple 10 
phenological observations to constrain and predict biome variables and further improve model 

performance (Knyazikhin et al., 1998; Xiao et al., 2009; Viskari et al., 2015). Assimilating satellite-

derived LAI and soil moisture products using the Simplified Extended Kalman Filter (SEKF) or EAKF 

has a strong impact on the LAI data. Furthermore, the abilities to simulate river discharge, land 

evapotranspiration, and gross primary production have been improved in Europe (Barbu et al., 2011; 15 
Albergel et al., 2017). To date, such studies have been conducted using a single sequential algorithm at 

a single site or on regional scales (Montzka et al., 2012). 

The Data Assimilation Research Testbed (DART) is an open source community facility and includes 

several different types of KF algorithms (Anderson et al., 2009). It has been coupled to many high-order 

models and observations for ocean, atmosphere, land surface, and chemical constituents. For example, 20 
DART has been coupled with CLM4 (DART/CLM4) to improve snow, LAI and soil moisture predictions 

(Zhang et al., 2014; Kwon et al., 2016; Zhao et al., 2016). 

Utilizing coupled DART/CLM4, the Global Land Surface Satellite LAI (GLASS LAI) data are 

assimilated into the Community Land Model with carbon and nitrogen components (CLM4CN) in the 

present study to explore the optimal assimilation algorithm for model performance. The experimental 25 
design and different assimilation algorithms are described in Sect. 2. Section 3 describes the optimal 

algorithm for LAI assimilation, and the proportion of observations is discussed in Sect. 4. Conclusions 

and discussions are given in Sect. 5. 

2 Data and Methodology 

A complete LDAS is mainly composed of forcing/initial/boundary datasets, parameterization sets, 30 
dynamical LSMs, assimilation algorithms, observational data and target output. LSMs play an important 

role in the LDAS because they can add physical constraints to the control variables during assimilation. 

In addition, the simulation ability of LSMs can directly affect the output because they provide the 

associated uncertainty for assimilation. 

2.1 CLM4CN 35 

Developed by the National Center for Atmospheric Research (NCAR), the Community Land Model 

(CLM) can simulate energy, momentum and water exchanges between the land surface and the overlying 
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atmosphere at each computational grid. The CLM is designed mainly for coupling with the atmospheric 

numerical model and providing the surface albedo (direct and scattered light within the visible and 

infrared bands), upward longwave radiation, sensible heat flux, latent heat flux, water vapor flux, and 

east-to-west and south-to-north surface stress needed by the atmospheric model. These parameters are 

controlled by many ecological and hydrological processes. The model can also simulate leaf phenology 5 
and physiological processes, as well as water circulation through plant pores. Ecological differences 

between vegetation types and thermal and hydrological differences between different soil types are also 

considered. Each grid cell can be covered by several different land use types. Each cell contains several 

land units, each land unit contains a different number of soil and snow cylindrical blocks, and each 

cylindrical block may contain several types of vegetation functions. The CLM employs 10 soil layers to 10 
resolve soil moisture and temperature dynamics and uses PFTs to represent subgrid vegetation 

heterogeneity (Oleson et al., 2010). 

There are two ways to update LAI in CLM4. The LAI is treated as a diagnostic variable that is 

linearly interpolated from a 30-year averaged satellite dataset, and there is no annual LAI variation for 

CLM4 with Satellite Phenology (CLM4SP) (Lawrence and Chase, 2007). For CLM4CN, the prognostic 15 
LAI is calculated by the leaf carbon pool and an assumed vertical gradient of specific leaf area (SLA) 

(Thornton and Zimmermann, 2007). Carbon and nitrogen are obtained by plant storage pools in one 

growing season and then retained and distributed in the subsequent year. All carbon and nitrogen state 

variables in vegetation, litter, and soil organic matter (SOM) are prognostic based on the prescribed 

vegetation phenology. The CLM4CN offline mode with prescribed meteorological forcing is used in this 20 
study. 

2.2 DART 

DART is developed and maintained by the Data Assimilation Research Section (DAReS) at NCAR. 

The purpose of DART is to provide a flexible tool for data assimilation (DA), and it has been coupled 

with many ‘high-order’ models. As a software environment, DART makes it easy to explore a variety of 25 
data assimilation methods and observations with different numerical models. The DART system includes 

several different types of sequential algorithms, which are selected at runtime by a namelist setting. The 

detailed settings for DART can be found at https://www.image.ucar.edu/DAReS/DART/. 

Currently, the coupled DART/CLM4 model has produced many reanalysis data for snow and soil 

moisture. It has been found that snow DA can improve temperature predictions, especially over the 30 
Tibetan Plateau, implying great implications for future land DA and seasonal climate prediction studies 

(Lin et al., 2016). Furthermore, the coupled DART/CLM framework would be employed to assimilate 

other variables, such as LAI, from various satellite sources and ground observations (i.e., truly 

multimission, multiplatform, multisensor, multisource, and multiscale). Ultimately, this would allow 

earth system models to be constrained by all types of observations to improve model performance for 35 
seasonal and decadal prediction skills. 
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2.3 Sequential Assimilation Algorithms 

2.3.1 Kalman Filter (KF) 

As a theoretical basis of the sequential DA method, the aim of the KF is to achieve the optimal 

analysis field based on the variance minimization principle (Kalman, 1960). The main KF procedure is 

as follows: (1) During the forecast stage, the dynamical model produces the forecast variables and 5 
associated uncertainties at the next observation time step, and (2) at the analysis stage, updated analyzed 

variables and associated uncertainties are determined based on the previous information on the 

uncertainties for each ensemble member. 

Compared with the statistical optimal interpolation algorithm, the predicted error changes with the 

dynamical model for the KF method. Furthermore, the KF method is more easily realized because the 10 
adjoint matrix is not needed. However, the KF method is based on the assumption of a Gaussian relation 

between the variables in the joint stage space prior distribution. 

2.3.2 Ensemble Kalman Filter (EnKF) 

The KF algorithm has not been widely used because of computing limitations and the linear model 

error assumption. The EnKF was proposed based on a Monte Carlo approximation, for which the 15 
background error covariance is approximated using an ensemble of forecasts (Evensen, 1994). The EnKF 

algorithm can be utilized for nonlinear systems and can also reduce the computing requirement of DA 

(Evensen, 2003; 2007). 

The EnKF procedure is divided into two stages: prediction and analysis. (1) In the prediction stage, 

the ensemble forecast field is generated from the ensemble initial condition, and the error covariance 20 
matrix of the ensemble forecast is calculated. (2) In the analysis stage, the simulation of each member of 

the ensemble is updated using the covariance matrix of observation vector error and state vector error. 

2.3.3 Ensemble Adjust Kalman Filter (EAKF) 

Although the forms of expression are different, the proposed EnSRF (Whitaker et al., 2002) and 

EAKF (Anderson, 2001) are the same algorithm. 25 
The difference between the EAKF and the traditional EnKF lies in the adjustment of the gain matrix 

to avoid filtering the divergence problem by increasing the premise of the analysis error covariance 

(Anderson, 2003, 2007; Wang et al., 2007). In the EAKF algorithm, ensemble observation members are 

calculated by the observation operator, and the increment of each observation member is calculated as 

∆𝑌𝑌𝑖𝑖. 30 

The increment ∆𝑋𝑋𝑖𝑖𝑖𝑖  for each ensemble sample of each state variable in terms of ∆𝑌𝑌𝑖𝑖  can then be 

calculated as follows: 

∆𝑋𝑋𝑖𝑖𝑖𝑖 =  
𝜎𝜎𝑗𝑗𝑜𝑜
𝑝𝑝

𝜎𝜎𝑜𝑜
𝑝𝑝  ∆𝑌𝑌𝑖𝑖.                                                                    (1) 

where i indicates the ensemble member, j is the state vector member, 𝜎𝜎𝑗𝑗𝑜𝑜
𝑝𝑝  is the prior covariance of state 

vector and observation, and 𝜎𝜎𝑜𝑜
𝑝𝑝 is the prior variance of observation. 35 
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2.3.4 Particle Filter (PF) 

The Particle Filter (PF) is also a sequential Monte Carlo method, which is based on the Bayesian 

sequential importance sampling method (SIS). The PF algorithm finds a set of random samples in the 

state space to approximate the probability density function and then replaces the integral operation with 

the sample mean to obtain the process of minimum variance distribution of the state (Moradkhani et al., 5 
2005). The procedure of the PF algorithm can also be divided into two frameworks: forecast and analysis. 

If there are enough observations, the posterior density at k can be approximated as 

p(Xka|Y1:k)  ≈  ∑ wi,k δ(Xka − Xi,ka )N
i=1 .                                                  (2) 

in which 𝛿𝛿(∗) is the Dirac Function and �𝑤𝑤i,k

N

i=1

= 1. 

Unlike the EnKF algorithm, the PF method takes into account the weights of different particles and 10 
can be better applied to nonlinear systems. However, in association with the DA, there are a limited 

number of particles with large weights, and too many computing resources are distributed to particles 

with weights of approximately 0. This situation is called particle degradation (Doucet et al., 2000). 

Effective methods to solve this issue include resampling or selecting more reasonable importance 

functions. 15 

2.4 Ensemble Meteorological Forcing 

The ensemble initial conditions and background error (Hu et al., 2014) are produced from ensemble 

analysis products generated by running DART and the Community Atmosphere Model (CAM4) (Raeder 

et al., 2012). DART/CAM4 produced 80 atmospheric forcing datasets with 6-hour time intervals for the 

period of 1998-2010. These ensemble meteorological data have been widely employed in DA for ocean, 20 
snow, soil moisture, and many other related studies (Danabasoglu et al., 2012). By considering 

computational cost and filter performance, 40 members among the ensemble forcing datasets are chosen 

to drive the CLM4CN. 

2.5 Experimental Design 

Table 1. Experimental design for LAI assimilation using DART/CLM4CN. 25 

 

To determine the optimal assimilation algorithm, four experiments corresponding to the KF, EnKF, 

EAKF and PF methods are designed and shown in Table 1. During assimilation, CLM stops and writes 

restart and history files at a frequency of 8 days. If there is available observational GLASS LAI data, 

they are assimilated into the CLM4CN. DART extract state vector, the increments are calculated by 30 
filtering at each time step, and the LAI, leaf carbon (Leaf C) and leaf nitrogen (Leaf N) are updated. The 

Experiment Assimilated 
variables Updated variables Assimilation algorithm Accept all 

observation 

Algorithms  GLASS LAI LAI, Leaf C, Leaf N EAKF, EnKF, KF, PF YES 

Observation 
Proportion  GLASS LAI LAI, Leaf C, Leaf N EAKF, EnKF, KF, PF NO 
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adjusted DART state vector is resent to the CLM restart files as a new initial condition for the next time 

step. 

3 The Optimal Algorithm for DART/CLM4CN 

The spatial distributions of global LAI in 2002 for (a) observations in July, (b) ensemble mean of 

simulations in July, (c) observations in November, and (d) ensemble mean of simulations in November 5 
are shown in Fig. 1. The observations in Fig. 1 are from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) LAI dataset with a spatial resolution of 1.0 latitude by 1.0 longitude. There 

are two latitudinal belts of high LAI values located in the tropics and at 50-65°N. These two regions are 

mainly dominated by evergreen broadleaf forests and boreal forests, respectively. Because of the 

presence of deserts, plateaus and bare ground, the LAI is low in western North America, western 10 
Australia, southern Africa, and southern South America, where shrubs and/or grass are dominant. 

Globally, the CLM4CN can simulate the LAI distribution characteristics, except that it systematically 

overestimates LAI, especially at low latitudes. There are 3 high-LAI regions located in the tropics: the 

Amazon, central Africa, and some islands in Southeast Asia. The global LAI is lower in November than 

in July. The LAI values in the high latitudes of the northern hemisphere are higher in July than in 15 
November because November is not the growing season for most of the vegetation in the northern 

hemisphere. 

Figure 1: Spatial distributions of global LAI values in 2002 for (a) observations in July, (b) ensemble mean of 

simulations in July, (c) observations in November, and (d) ensemble mean of simulations in November. 

The differences between global LAI from observations and that from assimilation experiments in 20 
July 2002 with the methods of (a) EAKF, (b) EnKF, (c) KF and (d) PF are shown in Fig. 2. Globally, 

assimilation results with the methods of EAKF and EnKF are larger in lower-latitude regions and higher-

latitude regions in the Northern Hemisphere. For the EAKF and EnKF algorithms, large negative biases 

are located in the Amazon region, central Africa, and northeastern China, which are dominated by BET 

(a) MODIS LAI in July, 2002             (b) Simulated LAI in July, 2002 

 
(c) MODIS LAI in November, 2002         (d) Simulated LAI in November, 2002 
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tropical, NET boreal forests and mixed forest types, respectively. The LAI values from the assimilation 

experiment are always higher in the middle- and high-latitude regions, especially in western North 

America, the northern Amazon, northwestern China, and western Australia, where open shrublands and 

grasslands are dominant. The LAI values from the assimilation experiments with the KF and PF 

algorithms are highly overestimated compared to the observations in the northern and eastern Amazon, 5 
central Africa, southern Eurasia, and Southeast Asia. In addition, the LAI values obtained by the EAKF 

method are more continuous than those obtained by the EnKF method and more consistent with the 

observations in central South America and central Africa. Notably, the correction of overestimated LAI 

is significantly better than that of underestimated LAI, which is mainly attributed to the high dispersion 

of LAI in those regions. In other words, high dispersion is beneficial to assimilation. 10 

 
Figure 2: Differences between global LAI from assimilation experiments and that from observations in July 

2002 with the methods of (a) EAKF, (b) EnKF, (c) KF and (d) PF. 

The differences between global observed LAI values and assimilated LAI values with the methods 

of (a) EAKF, (b) EnKF, (c) KF and (d) PF in November 2002 are also shown in Fig. 3. Similar to Fig. 2, 15 
the results indicate that the EAKF and EnKF assimilation algorithms are better than the KF and PF 

algorithms. In detail, the EAKF algorithm is better than the EnKF method in November, especially in 

the Amazon, central Africa, and southern Eurasia. The biases of assimilated LAI relative to the observed 

LAI are higher in November in the 20-65°N region, which may be because vegetation during this period 

in the Northern Hemisphere is not lush. In western Australia and central Eurasia, the improvement of the 20 
underestimation in November is not as significant as that in July, which indicates that the system has a 

limited capability to simulate the vegetation process, especially for open shrubland and grassland. 
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Figure 3: Same as Fig. 2, but for November. 

The mean LAI globally and the LAI in five latitudinal bands were chosen for analysis in this study. 

The five bands are boreal (45-65°N), northern temperate (23-45°N), northern equatorial (0-23°N), 

southern equatorial (0-23°S), and southern temperate (23-90°S). Figure 4 presents the root mean square 5 
errors (RMSEs) of the ensemble means of simulation/assimilation versus observations for (a) global, (b) 

boreal, (c) northern temperate, (d) northern equatorial, (e) southern equatorial, and (f) southern temperate. 

Generally, although they all feature similar variation pattern characteristics, the RMSEs of all the 

assimilation datasets relative to the observations are less than those of the simulation, indicating that all 

four assimilation algorithms can improve the LAI simulation. The highest RMSE relative to the 10 
observations is associated with the simulation, followed by the assimilation datasets from the KF and PF 

algorithms, and the RMSEs are lowest for the EAKF and EnKF methods. During the growing season, 

the RMSEs of LAI reach their largest values, especially for the regions in the middle and high latitudes 

of the Northern Hemisphere and high latitudes of the Southern Hemisphere. In the low-latitude region 

covered by evergreen or deciduous broadleaf forests, the RMSE does not present an obvious annual 15 
change. Because the PF assimilation is heavily dependent on the weights of certain particles and to some 

degree ignores the importance of observed LAI data, the phenomenon of particle degradation occurs 

during the assimilation. 
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Figure 4: RMSEs of ensemble means of simulation/assimilation versus observations for (a) global, (b) boreal 

(45-65°N), (c) northern temperate (23-45°N), (d) northern equatorial (0-23°N), (e) southern equatorial (0-

23°S), and (f) southern temperate (23-90°S). 

Figure 5 shows the globally averaged RMSEs of simulation/assimilation. The RMSEs of 5 
assimilation are lower than those of simulation, implying that assimilating remotely sensed LAI data into 

the CLM4CN is an effective method for improving the model performance. The RMSEs of assimilation 

results using the algorithms of EAKF and EnKF are much lower than the KF and PF methods, indicating 

their better performance in assimilation. The lowest RMSE appears for the assimilation result with the 

EAKF method, indicating that the EAKF is the best algorithm. 10 

 
Figure 5: Globally averaged RMSEs for the simulation/assimilation results. 
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The background/analysis departures are calculated as (1) innovations, which are the differences 

between the assimilated observations and model background, and (2) residuals, which are the differences 

between the assimilated observations and analysis (Barbu et al., 2011). It was concluded that the LDAS 

system is working well based on the condition that the residuals are reduced compared to the innovations 

(Albergel et al., 2017). Figure 6 shows the histograms of innovation and residuals of LAI globally and 5 
for all subregions during July 2002. Generally, the distribution characteristics of both innovations and 

residuals are identical for the algorithms of KF and PF, which means that these two algorithms are not 

very efficient for LAI assimilation. The distribution of residuals is more centered on 0 than that of the 

innovations for the EAKF and EnKF algorithms, especially for the EAKF algorithm. The innovations 

dominantly exhibit a large negative bias, indicating that the model always highly overestimates LAI. The 10 
residuals can improve this overestimation situation, especially for the EAKF algorithm. The analysis 

departures show an abnormal high value in the range of -3 to -2 for the boreal and southern equatorial 

subregions for the EnKF algorithm but not for the EAKF algorithm, implying that the EAKF algorithm 

is the optimal algorithm for LAI assimilation. 

 15 

Figure 6: The histograms of innovation and residuals of LAI globally and for all subregions during July 2002. 

(a-d) Global; (e-h) boreal; (i-l) northern temperate; (m-p) northern equatorial; (q-t) southern equatorial; (u-

x) southern temperate 
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4 Effective Observational Proportion 

The assimilation results depend not only on the algorithm but also on the observations. This not 

only requires a sufficiently strong degree of discretization for ensemble simulations but also requires the 

observational variables to be sufficiently trustworthy. In this section, the proportion of LAI observations 

that can be accepted for the four algorithms is discussed. 5 
To explain the relationship between assimilation algorithms and observation rejection, Fig. 7 

displays the proportion of accepted LAI observations for the four algorithms in the zonal regions. In 

general, the EnKF and EAKF methods accepted many more observational LAI observations than the PF 

and KF methods. In the low-latitude regions, the proportion of accepted LAI observations is 

approximately 75%, which is lower than in the high-latitude regions. This may be because the broadleaf 10 
forest in tropical regions can grow unrestrictedly in the model, producing LAI values that are much higher 

than the observations. At the very beginning of assimilation, DART rejects the largest proportion of LAI 

observations in the southern equatorial, northern equatorial, and northern temperate zones due to large 

biases between the simulation and the observations. Over time, the rejection proportion gradually 

decreases for the northern equatorial, southern equatorial and southern temperate. As ensemble-analyzed 15 
LAI values tend to relatively fixed, the rejection proportion increases over regions with small LAI 

amplitudes, such as the northern temperate and boreal region. From May to September in the boreal 

region and from April to September in the northern temperate region, the proportion of accepted LAI is 

much smaller than in the other regions. These two periods are also when the model simulation presents 

an obvious discrete characteristic. This experiment illustrates the utility of the spin-up process for 20 
ensemble initial conditions. 

 
Figure 7: The proportion of accepted LAI observations for the four algorithms in the zonal regions. 
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The difference between globally assimilated and observed LAIs with the methods of EAKF (with 

rejection) in (a) July and (b) November are shown in Fig. 8 to illustrate the role of observation proportion. 

It can be concluded that when accepting all the observations, the assimilation results seem to be better 

than when some observations are rejected during assimilation. Large biases occur in the Amazon, central 

Africa, southern Eurasia, and the boreal region, where the LAI is overestimated in the model. 5 
Furthermore, the KF and PF algorithms gradually reduce the acceptance of observations as assimilation 

progresses, which may partially explain their worse performance than the EnKF and EAKF algorithms 

(see Fig. 5). 

 
Figure 8: Differences between globally assimilated and observed LAIs for the methods of EAKF in (a) July 10 
and (b) November. 

During assimilation, the assimilated observations (GLASS LAI) are always treated as “true” values. 

The question thus becomes how do the true values influence the assimilation results? Figure 9 shows the 

RMSEs of simulation experiments without/with rejection (EAKF_noreject / EAKF_reject) over the (a) 

global, (b) boreal, (c) northern temperate, (d) northern equatorial, (e) southern equatorial, and (f) southern 15 
temperate regions. In the EAKF_reject experimental design, if the observed LAI is three times larger 

than the bias between the simulation and the observations, the observation would be rejected by DART, 

while in the EAKF_noreject experiment, all observed LAIs are assimilated. Generally, RMSEs for both 

simulation and assimilation present obvious annual variations, with RMSEs reaching their maximum 

values in the season with considerable vegetation growth over a large area. The RMSE of assimilation is 20 
far less than that of the simulation, although their characteristic variation patterns are similar. This 

demonstrates the effectiveness of assimilation for improving model simulation. The RMSE relative to 

the observations was highest for the simulation, followed by the EAKF_reject experiment, and was 

lowest for the EAKF_noreject experiment. The RMSEs are large during the growing season, when LAI 

values are also high in the boreal and northern temperate regions. During assimilation, when accepting 25 
all the observations, the RMSE is smaller than that when rejecting some observations. 
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Figure 9: RMSEs of simulation experiments without/with rejection (EAKF_noreject and EAKF_reject) for 

the (a) global, (b) boreal (45-65°N), (c) northern temperate (23-45°N), (d) northern equatorial (0-23°N), (e) 

southern equatorial (0-23°S), and (f) southern temperate (23-90°S) regions. 

5 Conclusions and Discussion 5 

The Community Land Model version 4 with prognostic carbon-nitrogen components (CLM4CN) is 

coupled with the Data Assimilation Research Testbed (DART) to determine the optimal assimilation 

algorithm for leaf area index (LAI). Four different sequential methods, i.e., the Kalman Filter (KF), 

Ensemble Kalman Filter (EnKF), Ensemble Adjust Kalman Filter (EAKF), and Particle Filter (PF), are 

discussed in this paper. 10 

The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method 

for improving model performance. Globally speaking, the EAKF and EnKF assimilation algorithms are 

better than the KF and PF assimilation algorithms. The LAI obtained by the EAKF method is more 

continuous than that obtained by the EnKF method and more consistent with observations in central 

South American and central Africa, whereas the deviation in the EnKF method can be from -4 m2 m-2 to 15 

4 m2 m-2. Furthermore, the assimilation shows better performance in the vegetation growing season. The 

lowest root mean square error (RMSE) is associated with the EAKF algorithm, suggesting that the EAKF 

algorithm is the best and has a robust performance. 
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The proportion of observations accepted by the model is another topic of this research. The 

proportion of accepted LAI observations is 10-20% in the low latitudes lower than in the high latitudes 

because of large biases between the assimilation and the observations. When all the observations are 

accepted, the RMSE of the results is smaller than that when some observations are rejected. 

  5 
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Code availability. The Community Land Model version 4.0 with carbon and nitrogen Components 

(CLM4CN) is a part of the Community Earth System Model version 1.1.1 (CESM1.1.1) developed by 

the National Center for Atmospheric Research (NCAR). The CESM code can be downloaded from 

http://www.cesm.ucar.edu/index.html. Developed and maintained by the Data Assimilation Research 

Section (DAReS) at NCAR, Data Assimilation Research Testbed (DART version lanai) can be 5 

downloaded from https://www.image.ucar.edu/DAReS/DART/. 
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